Baldwin Union Free Schools District Geometry Scope and Sequence (Common Core) January, 2018 Module 1 **Module 2** Module 3 **Module 4** **Module 5** #### **Curriculum Writers** Administration Lok H. Yung, Mathematics Supervisor 6-12 Teacher Rina Adams, Mathematics teacher Stephanie Piccolo, Mathematics teacher ## **Module 1: Congruence, Proof, and Constructions** | Sub-Topics | Specific Topics | Common Core
Standards | Resources | Number
of Days | |----------------------------------|--|--|--|-------------------| | Unknown Angles | □ Solve for Unknown Angles—Angles and Lines at a Point □ Solve for Unknown Angles—Transversals □ Solve for Unknown Angles—Angles in a Triangle □ Base Angles of Isosceles Triangles | G-CO.C.9 | Module 1 Lessons 6 - 8 Module 1 Lesson 23 Identifying Angles Video Parallel Lines Activity Geogebra Angle Pairs khan academy angles practice | 6 | | Basic Constructions | □ Construct an Equilateral Triangle □ Copy and Bisect an Angle □ Construct a Perpendicular Bisector □ Points of Concurrencies | G-CO.A.1,
G-CO.D.12,
G-CO.D.13 | www.mathopenref.com Module 1 Lessons 1 - 5 Points of Concurrency Video | 6 | | Unknown Angles | ☐ Unknown Angle Proofs — Writing Proofs ☐ Unknown Angle Proofs — Proofs with Constructions ☐ Unknown Angle Proofs — Proofs of Known Facts | G-CO.C.9 | Module 1 Lessons 9 - 11 <u>Intro to Proofs Activity</u> | 5 | | Transformations/Rigid
Motions | □ Transformations—The Next Level □ Rotations □ Reflections □ Rotations, Reflections, and Symmetry □ Translations □ Characterize Points on a Perpendicular Bisector □ Looking More Carefully at Parallel Lines □ Construct and Apply a Sequence of Rigid Motions □ Applications of Congruence in Terms of Rigid Motions □ Correspondence and Transformations | G-CO.A.2,
G-CO.A.3,
G-CO.A.4,
G-CO.B.6,
G-CO.B.7,
G-CO.D.12 | Module 1 Lessons 12 - 21 Geogebra Translations Demo Geogebra Reflection Trends Geogebra Rotation Trends Video of Composition of Rigid Motion | 10 | | | Mid-Module Assessment | | | | | Congruence | ☐ Congruence Criteria for Triangles—SAS☐ Congruence Criteria for Triangles—ASA and SSS☐ | G-CO.B.7,
G-CO.B.8 | Module 1 Lessons 22, 24 - 27 | 10 | | | Congruence Criteria for Triangles—AAS and HLTriangle Congruency Proofs | | Methods Of Congruence Two Column Proof Checklist | | |--|--|---|--|-----| | Proving Properties of
Geometric Figures | □ Properties of Parallelograms □ Special Lines in Triangles (Midsegments) | G-CO.C.9,
G-CO.C.10,
G-CO.C.11 | Module 1 Lesson 28 Module 1 Lesson 29 - 30 <u>Discovering Properties of Parallelograms</u> | 7 2 | | Advanced Constructions | Construct a Square and a Nine-Point Circle Construct a Nine-Point Circle | G-CO.D.13 | Module 1 Lesson 31 - 32 | 1 | | Axiomatic Systems | ☐ Review of the Assumptions | G-CO.A.1,
G-CO.A.2,
G-CO.A.3,
G-CO.A.4,
G-CO.B.6,
G-CO.B.7,
G-CO.B.8,
G-CO.C.9,
G-CO.C.10,
G-CO.C.11,
G-CO.C.12,
G-CO.C.13 | Module 1 Lessons 33 and 34 | 1 | # Review, Quiz, Test, and Reflect- 24 days (Including Quarterly Review and Quarterly) Total Number of Days - 72 ### **Module 2: Similarity, Proof, and Trigonometry** | Sub-Topics | Specific Topics | Common Core
Standards | Resources | Number
of Days | |----------------|---|--------------------------------------|--|-------------------| | Scale Drawings | □ Scale Drawings □ Making Scale Drawings Using the Ratio Method □ Making Scale Drawings Using the Parallel Method | G-SRT.A.1,
G-SRT.B.4,
G-MG.A.3 | Module 2 Lesson 1 - 5 Scale Drawings and Football Activity | 7 | | | | | | - | |---|--|--|--|---| | | □ Comparing the Ratio Method with the Parallel Method□ Scale Factors | | | | | Dilations | □ Dilations as Transformations of the Plane □ How Do Dilations Map Segments? □ How Do Dilations Map Lines, Rays, and Circles? □ How Do Dilations Map Angles? □ Dividing the King's Foot into 12 Equal Pieces □ Dilations from Different Centers | G-SRT.A.1,
G-SRT.B.4 | Module 2 Lesson 6 - 11 Finding Scale Factor How To Video | 3 | | Similarity and Dilations | □ What Are Similarity Transformations, and Why Do We Need Them? □ Properties of Similarity Transformations □ Similarity □ The Angle-Angle (AA) Criterion for Two Triangles to Be Similar □ Between-Figure and Within-Figure Ratios □ The Side-Angle-Side (SAS) and Side-Side-Side (SSS) Criteria for Two Triangles to Be Similar □ Similarity and the Angle Bisector Theorem □ Families of Parallel Lines and the Circumference of the Earth □ How Far Away Is the Moon? | G-SRT.A.2,
G-SRT.A.3,
G-SRT.B.5,
G-MG.A.1 | Module 2 Lessons 12 - 20 Similarity Postulates | 5 | | | Mid-Module Assessment | | | | | Applying Similarity to Right
Triangles | ☐ Special Relationships Within Right Triangles—Dividing into Two Similar Sub-Triangles ☐ Multiplying and Dividing Expressions with Radicals ☐ Adding and Subtracting Expressions with Radicals ☐ Prove the Pythagorean Theorem Using Similarity | G-SRT.B.4 | Module 2 Lesson 21 - 24 (Review Factoring, Simplifying Radicals) Reducing Radicals on Calculator Review Factoring Activity | 8 | | Trigonometry | ☐ Incredibly Useful Ratios ☐ The Definition of Sine, Cosine, and Tangent ☐ Sine and Cosine of Complementary Angles and Special Angles ☐ Solving Problems Using Sine and Cosine ☐ Applying Tangents | G-SRT.C.6,
G-SRT.C.7,
G-SRT.C.8 | Module 2 Lessons 25 - 34 Intro to Trig Project (Discovery) Law of Sines and Cosines How to determine which formula to use | 7 | | | □ Trigonometry and the Pythagorean Theorem □ Using Trigonometry to Determine Area □ Using Trigonometry to Find Side Lengths of an Acute Triangle □ Applying the Laws of Sines and Cosines □ Unknown Angles | | | | |--------------------|---|--|--|-------------------| | | Review, Quiz, Test, and Reflect - 15 days
Total Number of Days - 45 | | | | | Module 3: Extendin | g to Three Dimensions | | | | | Sub-Topics | Specific Topics | Common Core
Standards | Resources | Number
of Days | | Area | □ What Is Area? □ Properties of Area □ The Scaling Principle for Area □ Proving the Area of a Disk | G-GMD.A.1 | Module 3 Lesson 1 - 4 | 3 | | Volume | □ Three-Dimensional Space □ General Prisms and Cylinders and Their Cross-Sections □ General Pyramids and Cones and Their Cross-Sections □ Definition and Properties of Volume □ Scaling Principle for Volumes □ The Volume of Prisms and Cylinders and Cavalieri's Principle □ The Volume Formula of a Pyramid and Cone □ The Volume Formula of a Sphere □ How Do 3D Printers Work? | G-GMD.A.1,
G-GMD.A.3,
G-GMD.B.4,
G-MG.A.1,
G-MG.A.2,
G-MG.A.3 | Module 3 Lesson 5 - 13 <u>Discover Cross Sections</u> <u>Activity</u> Volume and Density of 3D <u>Geometric Shapes (Video)</u> <u>Practice with Cavalieri's</u> <u>Principle</u> | 7 | | M. I.I. A. C. | Review, Quiz, Test, and Reflect- 6 days Total Number of Days - 16 | | | | | Module 4: Connecti | ng Algebra and Geometry Through Coordinat | es | T | | | Sub-Topics | Specific Topics | Common Core
Standards | Resources | Number
of Days | | Rectangular and Triangular
Regions Defined by
Inequalities | □ Searching a Region in the Plane □ Finding Systems of Inequalities That Describe Triangular and Rectangular Regions □ Lines That Pass Through Regions □ Designing a Search Robot to Find a Beacon | G-GPE.B.7 | Module 4 Lessons 1 - 4 | 2 | |--|--|-------------------------|---|---| | Perpendicular and Parallel
Lines in the Cartesian Plane | □ Criterion for Perpendicularity □ Segments That Meet at Right Angles □ Equations for Lines Using Normal Segments □ Slope of a Line □ Parallel and Perpendicular Lines □ Dilating a Line (From the Origin or a Point on the Line) | G-GPE.B.4,
G-GPE.B.5 | Module 4 Lessons 5 - 8 Slopes of Parallel and Perpendicular Lines: Inquiry Activity | 4 | | | Mid-Module Assessment | | | | | Perimeters and Areas of
Polygonal Regions in the
Cartesian Plane | □ Perimeter and Area of Triangles in the Cartesian Plane □ Perimeter and Area of Polygonal Regions in the Cartesian Plane □ Perimeters and Areas of Polygonal Regions Defined by Systems of Inequalities | G-GPE.B.7 | Module 4 Lessons 9 - 11 Area of shapes on a cartesian coordinate plane (Video) | 2 | | Partitioning and Extending Segments and Parameterization of Lines | Distance and Midpoint Formula Dividing Segments Proportionately Analytic Proofs of Theorems Previously Proved by Synthetic Means Motion Along a Line—Search Robots Again (Optional) The Distance from a Point to a Line | G-GPE.B.4,
G-GPE.B.6 | Module 4 Lessons 12 - 15 <u>Distance and Midpoint</u> <u>Mini-Project</u> | 4 | | | Review, Quiz, Test, and Reflect - 4 days
Total Number of Days - 16 | | | | ## **Module 5: Circles With and Without Coordinates** | Sub-Topics | Specific Topics | Common Core
Standards | Resources | Number of Days | |------------------------------|-------------------|--------------------------|------------------------|----------------| | Central and Inscribed Angles | ☐ Thales' Theorem | G-C.A.2, | Module 5 Lessons 1 - 6 | 3 | | | □ Circles, Chords, Diameters, and Their Relationships □ Quadrilaterals Inscribed in Circles □ Central Angles □ Inscribed Angle Theorem and Its Applications □ Unknown Angle Problems with Inscribed Angles in Circles | G-C.A.3 | Geogebra Circle Unit (Various Videos) Intro to Circle Vocab | | |---|--|---------------------------------|---|---| | Arcs and Sectors | □ The Angle Measure of an Arc □ Arcs and Chords □ Arc Length and Areas of Sectors □ Unknown Length and Area Problems | G-C.A.1,
G-C.A.2,
G-C.B.5 | Module 5 Lessons 7 - 10 Sector Area and Arc Length Foldable | 3 | | | Mid-Module Assessment | | | | | Secants and Tangents | □ Properties of Tangents □ Tangent Segments □ The Inscribed Angle Alternate—A Tangent Angle □ Secant Lines; Secant Lines That Meet Inside a Circle □ Secant Angle Theorem, Exterior Case □ Similar Triangles in Circle-Secant (or Circle-Secant-Tangent) Diagrams | G-C.A.2,
G-C.A.3 | Module 5 Lessons 11 - 16 Angles of Circles Graphic Organizer | 2 | | Equations for Circles and
Their Tangents | □ Writing the Equation for a Circle □ Recognizing Equations of Circles □ Equations for Tangent Lines to Circles | G-GPE.A.1,
G-GPE.B.4 | Module 5 Lessons 17 - 19 Student-Teacher Interactive (Desmos) | 2 | | Cyclic Quadrilaterals and Ptolemy's Theorem | ☐ Cyclic Quadrilaterals ☐ Ptolemy's Theorem | G-C.A.3 | Module 5 Lessons 20 - 21 | 1 | | | Review, Quiz, Test, and Reflect - 4 days
Total Number of Days - 15 | | | | Note to Geometry Teachers - This leaves 11 school days for Regents Review. This will take us to May 31st. We included review and test days for Quarterlies and Midterms as well as Midterm Week.