Baldwin Union Free Schools District
 Geometry Scope and Sequence (Common Core)

January, 2018

Module 1
Module 2
Module 3
Module 4
Module 5

Curriculum Writers

Administration
Lok H. Yung, Mathematics Supervisor 6-12

Teacher
Rina Adams, Mathematics teacher
Stephanie Piccolo, Mathematics teacher

Module 1: Congruence, Proof, and Constructions

Sub-Topics	Specific Topics	Common Core Standards	Resources	Number of Days
Unknown Angles	- Solve for Unknown Angles-Angles and Lines at a Point - Solve for Unknown Angles-Transversals Solve for Unknown Angles-Angles in a Triangle Base Angles of Isosceles Triangles	G-CO.C. 9	Module 1 Lessons 6-8 Module 1 Lesson 23 Identifying Angles Video Parallel Lines Activity Geogebra Angle Pairs khan academy angles practice	6
Basic Constructions	```Construct an Equilateral Triangle Copy and Bisect an Angle Construct a Perpendicular Bisector Points of Concurrencies```	$\begin{gathered} \text { G-CO.A.1, } \\ \text { G-CO.D. } 12, \\ \text { G-CO.D. } 13 \end{gathered}$	www.mathopenref.com Module 1 Lessons 1-5 Points of Concurrency Video	6
Unknown Angles	$\begin{aligned} & \text { - Unknown Angle Proofs Writing Proofs } \\ & \text { - Unknown Angle Proofs-Proofs with Construetions } \\ & \text { - Unknown Angle Proofs Proofs of Known Faets } \end{aligned}$	G-CO.C. 9	Module 1 Lessons 9-11 Intro to Proofs Activity	5
Transformations/Rigid Motions	Transformations-The Next Level Rotations Reflections Rotations, Reflections, and Symmetry Translations Characterize Points on a Perpendicular Bisector Looking More Carefully at Parallel Lines Construct and Apply a Sequence of Rigid Motions - Applications of Congruence in Terms of Rigid Motions \square Correspondence and Transformations	$\begin{aligned} & \text { G-CO.A. } 2, \\ & \text { G-CO.A. }, \\ & \text { G-CO.A. } 4, \\ & \text { G-CO.A. } 5, \\ & \text { G-CO.B. } 6, \\ & \text { G-CO.B. } 7, \\ & \text { G-CO.D. } 12 \end{aligned}$	Module 1 Lessons 12-21 Geogebra Translations Demo Geogebra Reflection Trends Geogebra Rotation Trends Video of Composition of Rigid Motion	10
Mid-Module Assessment				
Congruence	- Congruence Criteria for Triangles-SAS - Congruence Criteria for Triangles-ASA and SSS	$\begin{aligned} & \text { G-CO.B. } 7 \text {, } \\ & \text { G-CO.B. } 8 \end{aligned}$	Module 1 Lessons 22, 24 27	10

	- Congruence Criteria for Triangles-AAS and HL - Triangle Congruency Proofs		Methods Of Congruence Two Column Proof Checklist	
Proving Properties of Geometric Figures	- Properties of Parallelograms - Special Lines in Triangles (Midsegments)	$\begin{gathered} \text { G-CO.C. } 9 \text {, } \\ \text { G-CO.C. } 10, \\ \text { G-CO.C. } 11 \end{gathered}$	Module 1 Lesson 28 Module 1 Lesson 29-30 Discovering Properties of Parallelograms	$\begin{aligned} & 7 \\ & 2 \end{aligned}$
Advanced Constructions	D-Construe a Square and a Nine-Point Cirele \square Construet a Nine-Point Cirele	G-CO.D. 13	Module 1 Lesson 31-32	1
Axiomatic Systems	\square Review of the Assumptions	G-CO.A.1, G-CO.A.2, G-CO.A.3, G-CO.A.4, G-CO.A.5, G-CO.B.6, G-CO.B.7, G-CO.B.8, G-CO.C.9, G-CO.C.10, G-CO.C.11, G-CO.C.12, G-CO.C. 13	Module 1 Lessons 33 and 34	1
Review, Quiz, Test, and Reflect- 24 days (Including Quarterly Review and Quarterly) Total Number of Days - 72				
Module 2: Similarity, Proof, and Trigonometry				
Sub-Topics	Specific Topics	Common Core Standards	Resources	Number of Days
Scale Drawings	- Scale Drawings - Making Scale Drawings Using the Ratio Method Making Scale Drawings Using the Parallel Method	G-SRT.A.1, G-SRT.B.4, G-MG.A. 3	Module 2 Lesson 1-5 Scale Drawings and Football Activity	7

	- Comparing the Ratio Method with the Parallel Method - Scale Factors			
Dilations	- Dilations as Transformations of the Plane How Do Dilations Map Segments? How Do Dilations Map Lines, Rays, and Circles? How Do Dilations Map Angles? Dividing the King's Foot into 12 Equal Pieces Dilations from Different Centers	G-SRT.A.1, G-SRT.B. 4	$\begin{gathered} \text { Module } 2 \text { Lesson 6-11 } \\ \text { Finding Scale Factor How } \\ \underline{\text { To Video }} \end{gathered}$	3
Similarity and Dilations	- What Are Similarity Transformations, and Why Do We Need Them? Properties of Similarity Transformations Similarity The Angle-Angle (AA) Criterion for Two Triangles to Be Similar Between-Figure and Within-Figure Ratios The Side-Angle-Side (SAS) and Side-Side-Side (SSS) Criteria for Two Triangles to Be Similar Similarity and the Angle Bisector Theorem Families of Parallel Lines and the Cireumference of the Earth \square How Far Away Is the Moon?	$\begin{aligned} & \text { G-SRT.A.2, } \\ & \text { G-SRT.A.3, } \\ & \text { G-SRT.B.5, } \\ & \text { G-MG.A. } \end{aligned}$	Module 2 Lessons 12-20 Similarity Postulates	5
Mid-Module Assessment				
Applying Similarity to Right Triangles	- Special Relationships Within Right Triangles-Dividing into Two Similar Sub-Triangles \square Multiplying and Dividing Expressions with Radieals \square Adding and Subtraeting Expressions with Radieals \square Prove the Pythagorean Theorem Using Similarity	G-SRT.B. 4	Module 2 Lesson 21-24 (Review Factoring, Simplifying Radicals) Reducing Radicals on Calculator Review Factoring Activity	8
Trigonometry	Incredibly Useful Ratios The Definition of Sine, Cosine, and Tangent Sine and Cosine of Complementary Angles and Special Angles Solving Problems Using Sine and Cosine Applying Tangents	G-SRT.C.6, G-SRT.C.7, G-SRT.C. 8	Module 2 Lessons 25-34 Intro to Trig Project (Discovery) Law of Sines and Cosines How to determine which formula to use	7

	Trigonometry and the Pythagorean Theorem \square Using Trigonometry to Determine Area \square Using Trigonometry to Find Side Lengths of an Acute Triangle - Applying the Laws of Sines Cosines \square Unknown Angles			
Review, Quiz, Test, and Reflect - 15 days Total Number of Days - 45				
Module 3: Extending to Three Dimensions				
Sub-Topics	Specific Topics	Common Core Standards	Resources	Number of Days
Area	- What Is Area? - Properties of Area - The Scaling Principle for Area \square Proving the Area of a Disk	G-GMD.A. 1	Module 3 Lesson 1-4	3
Volume	Three-Dimensional Space General Prisms and Cylinders and Their Cross-Sections General Pyramids and Cones and Their Cross-Sections Definition and Properties of Volume - Scaling Principle for Volumes - The Volume of Prisms and Cylinders and Cavalieri's Principle - The Volume Formula of a Pyramid and Cone The Volume Formula of a Sphere	$\begin{aligned} & \text { G-GMD.A.1, } \\ & \text { G-GMD.A.3, } \\ & \text { G-GMD.B. } 4, \\ & \text { G-MG.A.1, } \\ & \text { G-MG.A.2, } \\ & \text { G-MG.A. } \end{aligned}$	Module 3 Lesson 5-13 Discover Cross Sections Activity Volume and Density of 3D Geometric Shapes (Video) Practice with Cavalieri's Principle	7
Review, Quiz, Test, and Reflect- 6 days Total Number of Days - 16				
Module 4: Connecting Algebra and Geometry Through Coordinates				
Sub-Topics	Specific Topics	Common Core Standards	Resources	Number of Days

Rectangular and Triangular Regions Defined by Inequalities	\square Searehing a Region in the Plane \square Finding Systems of Inequalities That Deseribe Triangular and Reetangular Regions \square Lines That Pass Threugh Regions \square Designing a Seareh Robot to Find a Beaeon	G-GPE.B. 7	Module 4 Lessons 1-4	2
Perpendicular and Parallel Lines in the Cartesian Plane	Criterion for Perpendicularity Segments That Meet at Right Angles Equations for Lines Using Normal Segments - Slope of a Line Parallel and Perpendicular Lines D Dilating a Line (From the Origin or a Point on the Line)	$\begin{gathered} \text { G-GPE.B.4, } \\ \text { G-GPE.B. } \end{gathered}$	Module 4 Lessons 5-8 Slopes of Parallel and Perpendicular Lines: Inquiry Activity	4
Mid-Module Assessment				
Perimeters and Areas of Polygonal Regions in the Cartesian Plane	- Perimeter and Area of Triangles in the Cartesian Plane - Perimeter and Area of Polygonal Regions in the Cartesian Plane \square Perimeters and Areas of Polygonal Regions Defined by Systems of Inequalities	G-GPE.B. 7	Module 4 Lessons 9-11 Area of shapes on a cartesian coordinate plane (Video)	2
Partitioning and Extending Segments and Parameterization of Lines	Distance and Midpoint Formula Dividing Segments Proportionately \square Analytic Proofs of Theorems Previously Proved by Synthetie Means \square Motion Along a Line-Seareh Robots Again (Optional) - The Distance from a Point to a Line	$\begin{aligned} & \text { G-GPE.B.4, } \\ & \text { G-GPE.B. } \end{aligned}$	Module 4 Lessons 12-15 Distance and Midpoint Mini-Project	4
Review, Quiz, Test, and Reflect - 4 days Total Number of Days - 16				
Module 5: Circles With and Without Coordinates				
Sub-Topics	Specific Topics	Common Core Standards	Resources	Number of Days
Central and Inscribed Angles	\square Thales' Theorem	G-C.A.2,	Module 5 Lessons 1-6	3

	Circles, Chords, Diameters, and Their Relationships Quadrilaterals Inscribed in Circles - Central Angles Inscribed Angle Theorem and Its Applications - Unknown Angle Problems with Inscribed Angles in Circles	G-C.A. 3	Geogebra Circle Unit (Various Videos) Intro to Circle Vocab	
Arcs and Sectors	The Angle Measure of an Arc - Arcs and Chords Arc Length and Areas of Sectors U Unknown Length and Area Problems	$\begin{aligned} & \text { G-C.A. } 1, \\ & \text { G-C.A. } 2, \\ & \text { G-C.B. } 5 \end{aligned}$	Module 5 Lessons 7-10 Sector Area and Arc Length Foldable	3
Mid-Module Assessment				
Secants and Tangents	Properties of Tangents Tangent Segments The Inscribed Angle Alternate-A Tangent Angle Secant Lines; Secant Lines That Meet Inside a Circle Secant Angle Theorem, Exterior Case Similar Triangles in Circle-Secant (or Circle-Secant-Tangent) Diagrams	$\begin{gathered} \text { G-C.A.2, } \\ \text { G-C.A. } \end{gathered}$	Module 5 Lessons 11-16 Angles of Circles Graphic Organizer	2
Equations for Circles and Their Tangents	- Writing the Equation for a Circle - Recognizing Equations of Circles - Equations for Tangent Lines to Circles	$\begin{gathered} \text { G-GPE.A.1, } \\ \text { G-GPE.B. } 4 \end{gathered}$	Module 5 Lessons 17-19 Student-Teacher Interactive (Desmos)	2
Cyclic Quadrilaterals and Ptolemy's Theorem	- Cyelic Quadrilaterals IPtolemy's Theorem	G-C.A. 3	Module 5 Lessons 20-21	1
Review, Quiz, Test, and Reflect - 4 days Total Number of Days - 15				

Note to Geometry Teachers - This leaves 11 school days for Regents Review. This will take us to May 31st. We included review and test days for Quarterlies and Midterms as well as Midterm Week.

